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Abstract

This paper gives the conditions necessary for weighted convergence of Hermite—Fejér interpolation
for a general class of even weights which are of exponential decay on the real line or at the end points
of (—1, 1). The results of this paper guarantee that the conditions of Theorem 2.3 in [11] are optimal.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction
For a functionf : (a, b)) > R, —co<a < b<oo and a set
n = {X1n> X20s oo X}, n =1
of pairwise distinct nodes €1, [y,,; f1denote the Hermite—Fejér interpolation polynomials
of degree<<2n — 1 to fwith respect tgy,. In fact, H,[y,; f1is the unique polynomial of

degree< 2n — 1 satisfying

Huly,s f](xjn) = f(xjn) and Hn/[Xn; f](xjn) =0 (11)

forj=1,2,...,n.
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This paper deals with Hermite—Fejér interpolations with respegt, twhose elements
are the zeros of a sequence of orthogonal polynomials. More precisely, in this paper we
considerwg (x) := exp(—Q(x)), whereQ : I — R is even, continuous, and of at least
polynomial growth at the end of intervalindl is either(—1, 1) or R. Theny, consists of
the zeros{xj,n(wé)}’}zl of then-th orthonormal polynomiabn(wzQ, x),

Pa(x) = pa(wh. x) = 7, (w5)x" + lower degree termsy, (wp) > 0)

with respect taw?,, defined by the condition

/pl’lpmwzQ(x)dx :5mn’ m,n:O, 1,2,....
I
Then all{xj,n(wZQ)};’.:l belongs td, which we arrange as

xn,n(wzQ) < xn—l,n(wzQ) << X2n (U)ZQ) < xl,n(wzQ)-

Let Hn[wZQ; -] be the Hermite—Fejér interpolation operator with respect to the zeros
{xjnW)Y1_y of pu(w; x).

Our main concern is the following problem/hat is a necessary and sufficient condition
onu(x) andw(x) that the relation
lim ” (f — Hy[w; f]) wH

n—00 Lo(D)

holds for every continuous function satisfying |- oo or 1 ‘f(x)wzQ(x)u(x)‘ =07?

Several sufficient conditions for weighted convergence of Hermite—Fejér interpolation
polynomials are obtained. S§&11,12,16,25,31] and the references therein. In particular,
[11,16,31] gave sufficient conditions of our problem with respect to the weights decaying
exponentially atthe end points. There is a vast literature dealing with necessary and sufficient
conditions for weighted convergence of Lagrange interpolation for even Freuik,Enaid
exponential weights o1, 1). We refer the reader to [1-5,7-9,17,19-22,24,26,28—-31] and
the many references cited therein. Especially, some necessary conditions for weighted con-
vergence of Lagrange interpolation with respect to these weights were givenin [4,8,9,28,30].
In this paper we intend to give the conditions necessary for weighted convergence of
Hermite—Fejér interpolation polynomials with respect to the weights decaying exponen-
tially at the end points.

This paper is organized as follows: in Section 2, we introduce our admissible class of
weights and state the main results. In Section 3, we present some lemmas and prove the
results of Section 2. In Section 4, we especially apply our main theorems to Freud and
Erdds weights cases. Finally, in Section 5, we recall some notations, bounds on orthogonal
polynomials and related estimates.

2. Main results

We first introduce some notations which we use in the following. For any two sequences
{b,}» and{c,}, of nonzero real numbers(or functions), we wiie < ¢, if there exists a
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constantC > 0, independent aofi(andx) such thab, <Cc, for nlarge enough and write
by ~ ¢y if by < ¢, andc, < b,. We denote byP, the space of polynomials of degree at

mostn. Let 7+ be either0, co) if I = Ror (0,1)if I = (-1,1).
We now introduce an admissible class of weights.

Definition 2.1. Letwgp(x) = exp(—Q(x)) whereQ(x) : I — R s even, continuous, and
(&) Q”(x) is continuous i+ andQ”(x), Q'(x) >0in I+,
(b) the function

xQ"(x)

Tx): =1+ ,xel+ 2.1
(x) o (21)
satisfies for large enoughor x close enough to 1
xQ'(x)
T(x) ~ . 2.2
(x) o0 (2.2)

MoreoverT, satisfies either:
(b1) There existA > 1 andB > 1 such that

ALST(x)<B,xel+. (2.3)
(b2) Tisincreasing im+ with limy_ o+ T(x) > L. If I = R,

lim T(x)= o0

|x]—00

and if I = (-1, 1), forx close enough te-1 and someA > 2,

T(x)> A
x) > .
1—x2

Then,wy (x) is called an admissible weight and we writg) € A.

We call wp(x) a Freud weight in the case of (bl). In the case of (b2), we call it an
Erdds weight in casd = R or an exponential weight o1, 1) in casel = (—1,1).
Freud weights are characterized by smooth polynomial decé).of at infinity and Erds
weights by their faster than smooth polynomial decay at infinity. Exponential weights on
(—1,1) decay strongly neat1 as exponentials decay faster than classical Jacobi weights.
They violate the well-known Szégondition for orthogonal polynomials (¢1.0, p. 208]).

The author gave a sufficient condition for our problem in [11]. In the following, we state
the extended Szabados’ result of [11].

Theorem 2.2(Jung[11]). Letwg € A, u(x) := |Q'(x)|, andv(x) := (x| + 1)~1/3 For
a continuous function f on | with

lim f(x)wzQ(x)u(x) =0,

|x]—o00 or 1
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it holds that
lim H (f — Hn[wZQ; f]) wZQv”

n—00 Loo(I) B

In the following, a necessary condition for the extended Szabados’ re$uit]a$ given.

Theorem 2.3. Letwg € A. Suppose : I — R™ is a measurable function satisfying that

lim . xv(x)0~3(x)/log(1+ |x|) = oo.

X—>00 or

Then there exists a continuous functipn I — R satisfying that

I @wh Q' () log(1+ x| =0

|x]—00 or
such that

lim sup|| H, [w: flw§vllL.) = oo.

n— o0
Theorem 2.4. Letwy € A. If for every continuous function f defined on | satisfying that

lim 1f (0w (0)Q' () log(L+ |x))| = 0 (2.4)

|x]—00 or

it holds that

lim [ = Hiwds fowde| =0

Loo(l)

then it is necessary that

lim . xv(x) 0~ %3(x)/log(1+ |x]) < oo. (2.5)

X—>00 or

Remark 2.5. Letwg (x) := exp(—|x|*/2) witha > 1, andv(x) := (|x] + 1)~A. Then the
necessary condition fakis A>1 — (2a)/3, because for larger| > 0 by Theoren®.4

v()xQ~%3(x)/log(L+ [x]) ~ [x|""A~ 33/ log(1+ |x]) < oo
should hold. Therefore, the conditioch>1/3 is necessary in order that the weighted

Hermite—Fejér interpolation polynomials converge forwal)(x) := exp(—|x|*/2) with
a > 1 and the factotl + |x|)~1/3in Theorem2.2 is optimal.

Moreover, we give a necessary condition fgy convergence in the following. Let, for
u > 0 be the Mhaskar—Rakhamanov—-Saff number. See Section 5, Appendix.

Theorem 2.6. Letwy € Aand0 < p<oc be given. Lew >0 and u be an even and non
decreasing function defined orSuppose for some fix€d< 6 < 1ande > 1,
lim sup u=(ag,) T~/ %(ay)ar "

n—o0

1+1/p _
L] <anm) /log a, = oo. (2.6)

pE(x)w(x)

X ‘
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Then there exists a continuous functipn/ — R satisfying that
2
Hg(x)wQ(x)u(x)H < 00 2.7)
Ly
such that

lim sup || H,[w5: g1()w(x)l|z,) = 00

n— o0
Theorem 2.7. Letwp € Aand0 < p <oo be given. Lew >0 and u be an even and non

decreasing function defined onlf for every continuous function g defined on | satisfying
(2.7)it holds that

Jm s~ Hilwgigow], =

then it is necessary that for some fixg¢ek 6 < 1ando > 1,

1= 1/’7) /logttYP g, < .

Lp(lxl <den)
2.8)

lim supu=(as,) T3 (ay)ay PE0w(x)

n—o0

3. Lemmas and proofs

To prove the theorems, we need some lemmas. In the following, constants independent
of n andx are denoted by, C1, Co, .... The symbolC does not necessarily denote the
same constant in different occurrences.

By (1.1), we have (cf. [32, p. 330])

n

n// Xkn
Hylw; f1x) ==Y (1 - %(x - m)) S o), (x), (3.1)
k=l pn kn
wherely, (x) is the fundamental Lagrange interpolation polynomial ([10, p. 23]), given by
(w%); x)
lkn(w2Q§x) = f” Q , k=1,2,...,n.
Pr(Wg: Xin) (X — Xkn)
Define
O(x, 1) = M, x,rel\ {0, (3.2)

— X
Pn = Pn(wzg) = ynfl(wzQ)/Vn(wzQ)’

and

An(x) = 2p, /, (Paw)2(D)O(x, 1) d. (3.3)
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Furthermore, define the Christoffel numbers
p - /Iz,fn(x)wzg(x) dx = /[lk,,(x)wzQ(x) dx k=1,2,...,n
ando,, ¥, (x) and their properties are shown in Section 5, Appendix.

Lemma 3.1. Letwg € A. Thenforl<ik<n

Ui (6) = P (¥k) _(x)fk) : (3.4)
5 1
Jkn P Pry—1(Xkn) = m; (3.5
s
Ai5k0) = 20, [ gy 252 (3.6)
and
Pn”(xkn) , A;/1 (Xkn)
Pn k) 20! , 3.7
p;/1 (Xkn) Q (o) + Ay (Xkn) ( )

Proof. (3.4) isin [10, p. 23-34]; (3.5) is in [25, (5.9)]; (3.6) is in [25, p. 579, in the proof
of Lemma 5.3]; and (3.7) is in [25, (5.5)].00

Lemma 3.2. Letwy € A. Then there exist constan€g, C> > 0 such that uniformly for
1<k<nandn,

< P’ (Xkn)

Q' (xkn) — C1< — <30 (xtn) + Coa.
pn(xkn)

Proof. We will follow the method of Lemma 5.3 if25]. From (3.6), we can obtain

|0 (Xpns 1)
|A}, ()| < 2p,, / (Paw)?(t) ——""—" dt
|t —Xpn | > 20140 (xg)) L |t — Xkn|
10 (Xn, 1)
+2p, f (Paw)?(1) = dt
It =i | <2(14Q (X)) 2 |t — xin]
=11+ I

SinceQ(x, t) >0 from (a) of Definition 2.1, by (3.3) we have
1 _
h<2p, /I S (L Q') (w201 O i, D) di
= 31+ Q' (tkn)) An (k)

Next, we estimatd,. Suppose that, > 0 and let

2 1
U= —/ Xint Q' (Xint) /v 1 — 2 dt.
T Jo



32 H.S. Jung / Journal of Approximation Theory 136 (2005) 26 -44

Thena, = x;,. See Section 5, Appendix. Then since<a, + 2(1+ Q’(a,)) "L, by (A.5)
we have

C

Ay — Ay
T ao@ ST it 2y

Xkn

Here, sinceC 7 2(@) (““) = o(1) asu — oo by (A.8), there exists a constant> 1 such that

[t < 1+—C 1+ o) < asu — oo
X \ ay X dey, u .
uT72(a,) ) T(ay) "

By the mean value property, there existsetweeny;, andt such that if O< |7] <1/2 then

2
|0'(t) — Q' (xrn)| = Q" (1Tt — xpn| <C1————— < C

1+ Q/(xkn)
and if|z| > 1/2 then
T -1
10/(t) = Q') | = Q" (17Dt — x4 | = %Q’urmr — xpal by (2.1)
ATy 47 (J))
< —v <
T oo 21D Gy 2
1 Z(?a”; %((“a C:)) 0'(ay) (-0 < 7] < max{ay. |f]} <dew)
¢, @
< ) by (A6
Co Gy @ @) by (A6)
a, TY?(ay)

< 3 0'(a,) by (5.5)with j = 1
u

<) o
S Gl Q'(a,) forsomee >0 by(A.8)

=Y

< Q' (xkn) + Cs)

lim 2 — 0 by 4.1) or (b2) condition§.

u—>00 Y

b

Therefore, since fof,

1
Q') = Q' Cutn)| = Q" (Tt — xin| < 5(Q' i) + €.
we have by (3.2), (3.4), and (3.5)
I < 2p, / (puwg)?(e 2 Dl g
[t —Xpn | <2(14+ Q' (xkn)) 2 [t — Xpnl
W
2, f (p—Q()) 10'(t) — O/ (e d
It =i | <2140 (i) L \ |8 — Xkn|

1 pawg )\
<2 (Qun +C)p f (—
2( ! )n It =k | <2140 (xg)) 2 \ [T = Xk |
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2
(Q/(xkn) + C) pn/ <M> dt
1

[t — Xkl

N

1
2
1 -2 2

E(Q (x¥kn) + C) Py (An 0 Pr—1(Xkn)) /I(lknWQ(l)) dt

N

1 !/
> (Q (%kn) + C) An (Xkn)-
From the estimations faf, and />, we have
| A, Cetn) / An (kn) | < Q' (k) + C.
Therefore, there exist constardig andC2 > 0 such that we obtain by (3.7)

< P’ (Xkn)

Q' (xn) — C1< o o) <30 () +C2. O

Lemma 3.3. There exists a constadt € 7+ such that forx,, < —C andx > 0

1 n' (Xkn ,
L = 3 @ ) < 2 () — 140 () (& — 3.
2 Pn (Xkn)

Proof. Since limy|—o0 or1 Q'(x) = oo, there exists a consta@t> 0 such that fory, <
—C andx > 0,
Pn”(xkn)

Pn(Xkn) ¥ =) —1> (Q/(an) B Cl) (x —xgn) — 1

1
= (X — Xpn) (Q/(xkn) - C1— )

X — Xkn

1 1 1
= (X — Xn) (EQ (Xkn) + 2O (xgn) — C1 — )

2 X — Xkn

1, 1 1
= (X — Xkp) (EQ (an)-i-EQ (xXkn) — C1 — ™ |>

1
> é(x — Xkn) Q' (Xkn)

and

M(x — k) —1< (3Q/(xkn) + CZ) (x = xkn) — 1

Py (Xkn)
< (x = xxn) (30 (xkn) + C2)
<A4x — xkn)Q/(xkn)

whereCy andC> are the same as in Lemm32. [

Now, letK > 0 be a constant satisfying the conditions of Lemma 3.3, i.exfpi< —K
andx >0

P’ (Xkn)

——(x = X)) — 1<AQ (pn) (X — X)) (3.8)
pn xkn)

1
E(x — Xin) Q' (xkn) <
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Proof of Theorem2.3. Let 0 < K < J on I+. Then define a continuous functidn
satisfyingf(x)wZQ(x)Q/(x) log(1+|x]) = —1onx <—J,0< —f(x)wZQ(x)Q/(x) log(1+
x)<lon[—J,—K]andf(x) =0onx > —K. Then forx > 0 by (3.1) and (3.8)

n

Halw)hs [l =) (1 e x"")) Sl

=1 p;;(xkn)

> (1 Ok xkn)> £, (x)
ang—K pn(xkn)

~ >0 =0 ) (X — xkn) f k)G, ().
Xkn S —K

Let y, be an element to maximid@,w¢| and for some constant& C1 < C» and large
N, an2 < an(1—C26,) < yp < ay(1—C10,) < a, by (A.3), (A.9), and (A.10). Then we
have for largen and for some G< f§ < 1 with J < fa,

x ‘Hn[wzg; L1 Gn)v ()

~ D =0 @) On — Xew) f k), )W () ()

Xin < —K

2 > =0 ) On — k) f n)IE, ) wE ()0 ()

—Pan<xin<—J
~ ) O = )G, W )Wy (k) 1097 + xgn ).
_ﬁan<xkn<_1
Since for—fa, < xx, < —J and by (A.1) and (A.2),
W (xkn) ~ (1 = |Xkn|/an + Lén)l/z ~1,

dn an
Axkn = Xkn — Xk+1,n ™ 7\P11(xkn) ~ 7

El

and by (A.9),

1/2
an’?pu(y)wo () ~ (nT (an))™®,

we have for—fa, < xx, < —J by (A.4)

3 = Xk By )W 52 en) W5 (V)

a3 PEG) WS (n)
~ (n = k) =3 W2 (o) (L — x|/t + L) Y22
n Yn — Xkn)
ay 1/3 Axkn
~ 2 (T (an))¥® —2—.
" (nT (an)) ot Ban

So, we obtain

Hy[wd: F10m)ws ) v(n)

S 13 A
22 T @) oo Y (o + fan) 10gar

_ﬁan <xpn<—J
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~ v(yn>— (nT (an))'® ——

logay,
T3a,) 1
v(yn)a"WIog_an
1
~ v(yn)an 0~ 3(ay) loga, by (A.5)
1
~v(yn)ynQ_2/3(yn)|og — o0 by(A.6)

asn — oo, sincea, ;2 < y, < a,. Therefore, we have the resultl]

Proof of Theorem 2.6. Let0 < K, K € I+ andK be a constant satisfying the conditions
of Lemma 3.3. See Eq. (3.8). Define a continuous fundisetisfying that for some constant
Lwith L > K

g(-x) = 07 X > —K,
0<gMwyMu@) <L YPlog™ VP + L), —L<x< —K,
and

g wh@u) = x|V log P+ |x]). x < —L.

Theng satisfies (2.7). Let be a constant with 6 y < 1 anday, > L for largen. Then for
largen,0<y<d <1,andx >0
| Halwds g10)|
~ > =g Q (vka) (x — xin)IZ, (x) by (3.8)

Xin<—K

2> =g Q an) (x — xR, ()

—Agy <Xgn <—Qy

Z > =0 )& = i)l (Ow g o) o) [k |

—Agy <Xkn <—0yn
x log™ P (L + g ).
Since for—ag, < xin < —ay, by (A1), (A7), and (A.6)
(1 — |Xknl/an + Lén)l/4 ~ T_l/4(an)» W (xkn) ~ T_l/z(an)s
T (xkn) ~ T (ayp), and — Q/(xkn) ~ Q/(an)7
by (A.2), (A.4), and (A.5) we have

Axpy

=0/ (aan) (¥ = X IZ, (VW7 (Xkn) ~ @ o ()T (@) ——
+|xkn|
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Therefore, forr > 1 and O< x < a4, We obtain
H,[w;: g1(x)

1-1 _ 1o Axpn _
Zan P2 T Y@y log g, Y e

—Aon <Xkn <—0yn

1-1 _ _1— asp — a _
~ay P p2(x)T~Y?(a,) log ™ ”Panﬁu Yasn)
n

1- ayn/aén)

1-1 — 11— —
~ dp /pl’ﬁ(x)T 1/2(an) log 1-1/p an ((1 ¥ x/az) u 1(“611)
n

-3/2
1-1 T (a ) _ _1_
~ay P p2( e /a;,” Yag) log " YPa, by (A7)

1-1 _ _ L
~ay RT3 (@) u ag,) log ™Y P gy

Finally,

n—oo

1/p
. — P
lim supu~*(ag,) 7% 2(ay)ay 1“’( / PE@w()| dx) /log"**P a,
[x| <dagn

1/p
Slimsup</l|Hn[w2Q;g]<x)w<x>|f’dx) :

n—o00

implying the result. [

Proof of Theorems2.4 and 2.7.By applying the uniform boundedness theorem for
1< p < oo, we have that

< 0

1/p
lim sup( /1 | [ 100w ()] dx) < sewhum],

n— o0

For 0 < p < 1, the method is almost the same as in the case<gp ¥ oo (cf. Theorem
10.19[27, p. 182]). O

4. Applications: F cases and€; cases

We consider Freud weights := exp(—Q) whereQ : R — R is of polynomial growth
at infinity.

Definition 4.1. Freud classF:
Letwg € AonI = R satisfying (b1). Then we writep € F.

A typical example of the Freud weights is
wy(x) == exp(—|x|*), o>1 xeR.

Specially, the case of = 2 is the Hermite weight.
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Proposition 4.2. Letwg € F. If A and B are the same as (2.3) then for some constant
C>0

cut’B<a, <cut’?, ue [1, 00). (4.2)
Proof. Thisis Lemma 5.2 (b)13, p. 478]. O
In the following, we restate Corollary 5.3 of [11].

Proposition 4.3(Jung[11]). Letwy € F. Letu(x) := (1+|Q'(x)]) andv(x) := (1 +
Ix)74, A>0.1f A > 1 — ZA then for a continuous function f d& with

. 2 _
lxllanoo ‘f(x)wQ(X)u(X)‘ =0,

we have

lim (£ = Halwds £100) wd o) 0

Loo(R) -
where A is the same as (&.3).

Theorem 4.4. Letwg € F. Letu(x) := (14 |Q'(x)]) andv(x) := (1 + |x[)~4, A>0.If
for every continuous function g defined on | satisfyi2g}) it holds that

Jim g0 = Hilwf: iy, =0

then it is necessary that
2
A> max{O, 1-—- §B} ,
where B is the same as (2.3).

Proof. From (2.5), it is necessary that
lim x(1+x)"20"%3(x)/log(1+ |x]) < oo

[x]—00

— lim x*20-3(x)/logx. (4.2)

X—>+00
Since from (2.3) it follows that
Cix* QW) <CxP,  |x[=x0 >0,
iflim oo x4 (xB)_g/ log x diverges, then (4.2) also diverges which implies the state-
ment. [J

Proposition 4.5(Jung and Kworj12]). Letwp € F andlet0 < p < o0, A € R, o > 0,
anda := min{1, «}. Assume that fod < p <2,

1
A>—o+ —;
p
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and forp > 2,

1
_@+A)+;n%(1_%) -0 (

ay —)asn—>oo,

logn

whereq,, is the nth Mhaskar—-Rakhmanov—Saff number. Then

im0 = Halwd: F100mwd @@+ 1x) ™

=0,
Ly(®)

for every continuous functiofi : R — R satisfying

i1 el wg @+ 1x)” = 0.

Theorem 4.6. Leta>0 and0 < p < oo. If for every continuous function f defined on |
satisfying that

| rewd oo+

< o0
Lp(®)

it holds that

im [ (£ = Halwds Fle)ud @+ 1x) =

Ly®
then it is necessary that in case@k p <2,
A> —a,

and in case o2 < p < oo,

a_‘“_An%(l_’g’) = 0(log*™Pn).

n

Proof. Letw(x) := w? (x)(1+ Ix])~2 andu(x) := (1 + |x|)*. Then by (2.3)

— _3 1-1 —
J:=u 1(a7n)T 2(ay)a; /1" |Og (1+1/P)an

Lp (x| <azy)
lo _(1+1/”)an.

PE()w(x)

—o—1
~ana /p

an pEwH ()@ + x4

Ly (x| <azn)

From Theorem 2.7, it is necessary that by (A.9)

—a—A-1/p

co>J 2 a, log=3+/P g,

Lp[*anyan]
|o _(l+l/[7)a
L9 ’
1, p <2
~ a7 Aog= /P, (|?gn)21/2, p=2
A2

anpEOUH ()|

~

—a—A-1/p
n

an pr)wH(x)

p > 2.

Therefore, we have the result]
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4.1. Erd6s weight case

We consider Eréls weightswg (x) := exp(—Q(x)) whereQ : R — Ris even and is of
faster than polynomial growth at infinity.

Definition 4.7. Erdds classts:
Letwgp € AonI = R satisfying (b2). Moreover, if we have for amy> 0
T(x)<C(Q(X))*, x — o0 (4.3)
for some positive consta independent ok then we writew € &1.
The archetypal examples ofy € &; are
)
wi o (x) := exp(—exp,(|x]%), xR,

whereo > 0, kis a positive integer, and ex) = explexp(exp(- - -))) denotes théth
iterated exponential.

2
wa p(x) = exp(— exp(log(A+x2)B> , xeR,

whereA is a fixed but large enough positive number ghd- 1.
For example forwy ,

kK 1-1
T(x) = Ty o(x) = o |:1+x“2 I exe (x“):| . x>0

=1 j=1

and so (2.2) and (4.3) hold in the stronger form

T(x )/(xQ (X)> 1. lim : T (x) o
|x|» Ol’l 0O(x) X—>00 [Hj:l Iogj Q(X)]
Proposition 4.8. Letwg € £1. Then for any > 0
a, <Cn® and T(a,)<Cn® n>1. (4.4)

Proof. Thisis Lemma 2.4 if8]. O

Proposition 4.9(Jung[11]). Letwg € &1. Letu(x) := Q'(x) with A > 1/3.Then for a
continuous function f of® with

lxllanoo ‘f(x)wQ(X)u(X)‘ =0,
we have

Iim (7@ = Hlwd, £100) wh |

Loo(R) -
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Theorem 4.10. Letwg € &1. Letu(x) := Q/A(x), A>0andw(x) := wzQ(x). If for every
continuous function g defined on | satisfyi{@y7)it holds that

Jm_| (e = Hilwh: lomwh o], =

then it is necessary that> 3.

Proof. Lety, be an element to maximize,w| and for some constant& C; < C, and
largen, a2 < a,(1—C20,) < y, < an(1—C19,) < a,. Then from (2.6), itis necessary
that

lim sup Q/_A(a(;n)T‘%(a,,)anp,f(yn)w(yn)/ loga, < oo

n—oo

A
= |im< T ) T=3(a,)(nT (ay))3/l0ga, by (A.5)

n—oo nT?(an)

. 1_ _A_3
= lim n3 Aa,?T 27 2(ay)/loga,.

n—0o0

Therefore, we have the result because we obtain a contradiction by (A.4) % O

Proposition 4.11(Damelin et al[6]). Letwp € &1.Let0 < p <00, A € R, andx > 0.
Assume that

2/1 1
A c(z-=)L
>max{o’3<2 p)}

Then
lim [1(f (¥) = Halw?: F10)wd @)@+ Q) ™1, @ =0
n—o0

for every continuous functiofi : R — R satisfying

Jim £ 0w () logh ™ (L + [x T2 (x) = 0.

Theorem 4.12. Letwg € £, and0 < p < oo. If for every continuous function f defined on
| satisfying that

< 0
Ly(R)

’

| £ Gowd o) logh (x| + DTH2(x)

it holds that
|(F ) = Halwd: flomwd @@+ o)~

LyR)

lim
n—0oo

then it is necessary that

A> max{o, % (% - %)} . (4.5)
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Proof. Letw(x) := w3 (x)(1+ 10D, u(x) := logt™ (1 + |x)T?(x), and

A= u a) T aay |

Ly(R
Similar to Theoren#.6, from Theorem 2.7, it is necessary that
00 > A ~ (loga,)~ T 72(q,)a; P

an 2w () L+ A log- 1/ g

Lp(lx‘ <dgn)

> (logan)~ T 2(a,)a, P Q2 (ay)

X

an P2 (X)W (x) L o
xlog~+1/P) g,
by the monotonicity oD
~ (loga,)~ T 2(a,) 0 A (@n)ax’* P log= M) g,
1, p<2
x { (logn)1/? P=2 Dpy(A9).
(T (@), p>2
Therefore, condition (4.5) is necessary because we obtain a contradiction by (4.4) and (A.5)

if A< max{O, 2 (% — %)} O
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Appendix

We letq,, for u > 0, be the positive root of the equation

1
U= %/ a,t Q' (ayt) /v 1—t2dt.
0

Then under our assumptions o (x)(see[13-15]),a, is uniquely defined and is contin-
uous and increasing witl. One of its usefulness is the Mhaskar—Saff identity

IPwollLea) = 1PWOILog[—ap,an]

valid for everyP € P, n>1.
We define some auxiliary quantities which we will need in the sequel[153=€.5].
Set:

On = (T (an)) 23, n>1,
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which are useful in describing the behaviopgiw?, x) nearx1,. For example, fowgp € A
L
[X1n/an, — 1< Eél’lﬂ

wherelL is a positive constant independentod,, — 0 asn — oo, since atleast' (x) > 1.
We also need the sequence of functions

x| <ap,

maxJ . /1— ] + Lo !
Y, (x) := y R " ’ Al
) ¢ T J1- 4 16, A1)
an
\Pn(an)a |x| = an,

which are useful in describing the spacing of zerog,afw?, x) and Christoffel functions.
The convergence of interpolation is closely connected to bounds on orthogonal polyno-
mials and related estimates, which we recall now.

Proposition A.1.Letw € A.
(@ Forn>2andl<;j<n—1,

a
Xjn — Xj+1,n ™ ;H\Pn(xjn)o (A2)
(b) Forn>1,
SUp | (0o ()11 x| /an| M4 ~ ay *2. (A.3)
xe

(c) Uniformly forn>1,1<j<n, andx € R,

3/2 @)

1001 ~ = (Bwo) (eju) (L= Ll fan + L3,) M x”_—x] . (A4)
(d) Uniformly foru>C andj =0, 1, 2,

ay QY (@) ~ uT (a,)T /2. (A.5)
(e) LetO < a < f5. Then uniformly foi >C andj =0, 1, 2,

T(aw) ~ T(ag),  am ~ag;,  and QY (aw) ~ 0V (ap,). (A.8)
() Given any fixed > 1,

ary 1

o Y Tay (A7)

(g) There exists a constantwith 0 < ¢ < 2 such that fom > 1,

2—¢
T@n< (—) . (A8)

n
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(h) Given0 < p <oo, we have fon >2,

L 1, p <4,
4 _ = 1
| pawol ) ~ai * 1 (0gm3, p=4 (A.9)

;(;,;)

(nT(an)®\* #/, p>4.

(i) Let0O < p<oo.LetK > 0.There exist C and N depending only ongKw o such that
n>NandP € P,,

”PwQ“L],(I) <C ”PwQ||L,,(\x|<an(l—Kén))‘ (A.10)

Proof.

(a) These follow from Corollary 1.2 (a), (b) i3], Corollary 1.4 (i), (1.35) in [14],
and Corollary 1.3 (a), (b) in [15].

(b) These follow from Corollary 1.4 ifil3], Corollary 1.5 (i) in [14], and Corollary
1.4 (a)in[15].

(c) It follows from the formula of ;, and Corollary 1.3 irf13], Corollary 1.5 (jii) in
[14], and Corollary 1.4 (b) in [15].

(d)—(e) For (b1) case, these follow from (b1) condition, Lemma 5.1 (c), and Lemma 5.2 (c)
in [13]. Otherwise, these follow from part of Lemma 3.2 in [14] and Lemma 2.2 in
[15].

(f) It follows from Lemma 5.2 (c) if13], Lemma 3.2 (v) in [14], and Lemma 2.2 (v)
in [15].

(g) For (bl) case, sincé&(x) is bounded, it follows from Lemma 5.2 (b) ifi3].
Otherwise, it follows from Lemma 3.2 (jii) in [14] and Lemma 2.2 (viii) in [15].

(h) It follows from Corollary 1.4 in13], Theorem 1.8 and Corollary 1.5 (ii) in [14],
Corollary 1.4 (a) in [15], Theorem 1.1 in [18], and Theorem 1 in [23].

() It follows from Theorem 1.8 in[13], Theorem 1.7 in [14], and Theorem 1.5
in[15]. O
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